Hello Guest. Sign Up to view and download full seminar reports               


Heat Pipe

Added on: February 22nd, 2012 by No Comments

A heat pipe is a simple device that can quickly transfer heat from one point to another. They are often referred to as the “superconductors” of heat as they possess an extra ordinary heat transfer capacity & rate with almost no heat loss.

The development of the heat pipe originally started with Angier March Perkins who worked initially with the concept of the working fluid only in one phase (he took out a patent in 1839 on the hermetic tube boiler which works on this principle). Jacob Perkins (descendant of Angier March) patented the Perkins Tube in 1936 and they became widespread for use in locomotive boilers and baking ovens. The Perkins Tube was a system in which a long and twisted tube passed over an evaporator and a condenser, which caused the water within the tube to operate in two phases. Although these early designs for heat transfer systems relied on gravity to return the liquid to the evaporator (later called a thermosyphon), the Perkins Tube was the jumping off point for the development of the modern heat pipe.

The concept of the modern heat pipe, which relied on a wicking system to transport the liquid against gravity and up to the condenser, was put forward by R.S. Gaugler of the General Motors Corporation. According to his patent in 1944, Gaugler described how his heat pipe would be applied to refrigeration systems. Heat pipe research became popular after that and many industries and labs including Los Alamos, RCA, the Joint Nuclear Research Centre in Italy, began to apply heat pipe technology in their fields. By 1969, there was a vast amount of interest on the part of NASA, Hughes, the European Space Agency, and other aircraft companies in regulating the temperature of a spacecraft and how that could be done with the help of heat pipes. There has been extensive research done to date regarding specific heat transfer characteristics, in addition to the analysis of various material properties and geometries.

1 vote, average: 3.00 out of 51 vote, average: 3.00 out of 51 vote, average: 3.00 out of 51 vote, average: 3.00 out of 51 vote, average: 3.00 out of 5 (1 votes, average: 3.00 out of 5)
You need to be a registered member to rate this topic.
Recommend this topic
More Details About This Topic => View Full Seminar Report

References for Heat Pipe

Topic Category - Electrical Topics

Related Topics

Access Premium Seminar Reports: Subscribe Now

Sign Up for comprehensive seminar reports & presentations: DOCX, PDF, PPTs.