Topics Tagged ‘Security’
Skin-identification programming could improve cell phone security
Cell phones, for example, the iPhone and Pixel permit clients to open the gadget with their appearances yet once in a while that product can be tricked.
Programming organization TrinamiX has built up an elective that it says is more earnestly to deceive.
It would like to extend the innovation outside of the telephone and incorporate it in to things, for example, checking travelers in self-driving vehicles and increased and computer generated reality.
The BBC’s innovation correspondent Zoe Thomas saw the item in real life.
Security Issues in Grid Computing
The last decade has seen a considerable increase in commodity computer and network performance mainly as a result of faster hardware and more sophisticated software. Nevertheless there are still problems, in the fields of science, engineering and business, which cannot be dealt effectively with the current generation of super computers. In fact, due to their size and complexity, these problems are often numerically and/or data intensive and require a variety of heterogeneous resources that are not available from a single machine. A number of teams have conducted experimental studies on the cooperative use of geographically distributed resources conceived as a single powerful computer. The new approach is known by several names such as, Metacomputing, seamless scalable computing, global computing and more recently Grid Computing.
The early efforts in Grid Computing started as a project to link super computing sites, but now it has grown far beyond its original intent. The rapid and impressive growth of internet has become an attractive means of sharing information across the globe. The idea of grid computing has emerged from the fact that, internet can also be used for several other purposes such as sharing the computing power, storage space, scientific devices and software programs. The term “Grid” is chosen as it is analogous to Electrical Power Grid where it provides consistent, pervasive and ubiquitous power irrespective of its source. The main aim of this paper is to present the state- of-the-art and issues in Grid computing.
This paper aims to present the state-of-the-art of Grid computing and attempts to survey the major international efforts in developing this emerging technology
SSL and TLS
Secure Socket Layer (SSL) denotes the predominant security protocol of the Internet for World Wide Web (WWW) services relating to electronic commerce or home banking.
The majority of web servers and browsers support SSL as the de-facto standard for secure client-server communication. The Secure Socket Layer protocol builds up point-to-point connections that allow private and unimpaired message exchange between strongly authenticated parties.
In the ISO/OSI reference model [ISO7498], SSL resides in the session layer between the transport layer (4) and the application layer (7); with respect to the Internet family of protocols this corresponds to the range between TCP/IP and application protocols such as HTTP, FTP, Telnet, etc. SSL provides no intrinsic synchronization mechanism; it relies on the data link layer below.
The SSL protocol allows mutual authentication between a client and server and the establishment of an authenticated and encrypted connection. SSL runs above TCP/IP and below HTTP, LDAP, IMAP, NNTP, and other high-level network protocols.
IRIS Recognition
Iris recognition is an automated method of capturing a person’s unique biological data that distinguishes him or her from another individual. It has emerged as one of the most powerful and accurate identification techniques in the modern world. It has proven to be most fool proof technique for the identification of individuals without the use of cards, PINs and passwords. It facilitates automatic identification where by electronic transactions or access to places, information or accounts are made easier, quicker and more secure.
A method for rapid visual recognition of personal identity is described, based on the failure of statistical test of independence. The most unique phenotypic feature visible in a person’s face is the detailed texture of each eye’s iris: an estimate of its statistical complexity in a sample of the human population reveals variation corresponding to several hundred independent degrees-of-freedom. Morphogenetic randomness in the texture expressed phenotypically in the iris trabeclar meshwork ensures that a test of statistical independence on two coded patterns organizing from different eyes is passed almost certainly, whereas the same test is failed almost certainly when the compared codes originate from the same eye. The visible texture of a person’s iris in a real time video image is encoded into a compact sequence of multi-scale quadrature 2-D Gabor wavelet coefficients, whose most significant bits comprise a 512 – byte “IRIS–CODE” statistical decision theory generates identification decisions from Exclusive-OR comparisons of complete iris code at the rate of 4,000 per second, including calculation of decision confidence levels. The distributions observed empirically in such comparisons imply a theoretical “cross-over” error rate of one in 1,31,000 when a decision criterion is adopted that would equalize the False Accept and False Reject error rates.