Hello Guest. Sign Up to view and download full seminar reports               

SEMINAR TOPICS CATEGORY


Medical Image Fusion

Added on: March 10th, 2012 by No Comments

Image fusion is the process by which two or more images are combined into a single image retaining the important features from each of the original images. The fusion of images is often required for images acquired from different instrument modalities or capture techniques of the same scene or objects. Important applications of the fusion of images include medical imaging, microscopic imaging, remote sensing, computer vision, and robotics. Fusion techniques include the simplest method of pixel averaging to more complicated methods such as principal component analysis and wavelet transform fusion. Several approaches to image fusion can be distinguished, depending on whether the images are fused in the spatial domain or they are transformed into another domain, and their transforms fused.

With the development of new imaging sensors arises the need of a meaningful combination of all employed imaging sources. The actual fusion process can take place at different levels of information representation, a generic categorization is to consider the different levels as, sorted in ascending order of abstraction: signal, pixel, feature and symbolic level. This focuses on the so-called pixel level fusion process, where a composite image has to be built of several input images. To date, the result of pixel level image fusion is considered primarily to be presented to the human observer, especially in image sequence fusion (where the input data consists of image sequences). A possible application is the fusion of forward looking infrared (FLIR) and low light visible images (LLTV) obtained by an airborne sensor platform to aid a pilot navigate in poor weather conditions or darkness. In pixel-level image fusion, some generic requirements can be imposed on the fusion result. The fusion process should preserve all relevant information of the input imagery in the composite image (pattern conservation) The fusion scheme should not introduce any artifacts or inconsistencies which would distract the human observer or following processing stages .The fusion process should be shift and rotational invariant, i.e. the fusion result should not depend on the location or orientation of an object the input imagery .In case of image sequence fusion arises the additional problem of temporal stability and consistency of the fused image sequence. The human visual system is primarily sensitive to moving light stimuli, so moving artifacts or time depended contrast changes introduced by the fusion process are highly distracting to the human observer. So, in case of image sequence fusion the two additional requirements apply. Temporal stability: The fused image sequence should be temporal stable, i.e. gray level changes in the fused sequence must only be caused by gray level changes in the input sequences, they must not be introduced by the fusion scheme itself; Temporal consistency: Gray level changes occurring in the input sequences must be present in the fused sequence without any delay or contrast change.

0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5 (0 votes, average: 0.00 out of 5)
You need to be a registered member to rate this topic.
Loading...
Recommend this topic
More Details About This Topic => View Full Seminar Report




References for Medical Image Fusion

http://en.wikipedia.org/wiki/Image_fusion
Topic Category - Computer/IT Topics

Related Topics

Access Premium Seminar Reports: Subscribe Now



Sign Up for comprehensive seminar reports & presentations: DOCX, PDF, PPTs.