Hello Guest. Sign Up to view and download full seminar reports               

SEMINAR TOPICS CATEGORY

Medical Topics Category

Pill Camera

Added on: January 12th, 2017 by Afsal Meerankutty No Comments

The aim of technology is to make products in a large scale for cheaper prices and increased quality. The current technologies have attained a part of it, but the manufacturing technology is at macro level. The future lies in manufacturing product right from the molecular level. Research in this direction started way back in eighties. At that time manufacturing at molecular and atomic level was laughed about. But due to advent of nanotechnology we have realized it to a certain level. One such product manufactured is PILL CAMERA, which is used for the treatment of cancer, ulcer and anemia. It has made revolution in the field of medicine. This tiny capsule can pass through our body, without causing any harm.

It takes pictures of our intestine and transmits the same to the receiver of the Computer analysis of our digestive system. This process can help in tracking any kind of disease related to digestive system. Also we have discussed the drawbacks of PILL CAMERA and how these drawbacks can be overcome using Grain sized motor and bi-directional wireless telemetry capsule .Besides this we have reviewed the process of manufacturing products using nanotechnology.Some other important applications are also discussed along with their potential impacts on various fields.

We have made great progress in manufacturing products. Looking back from where we stand now, we started from flint knives and stone tools and reached the stage where we make such tools with more precision than ever. The leap in technology is great but it is not going to stop here. With our present technology we manufacture products by casting, milling, grinding, chipping and the likes. With these technologies we have made more things at a lower cost and greater precision than ever before. In the manufacture of these products we have been arranging atoms in great thundering statistical herds. All of us know manufactured products are made from atoms. The properties of those products depend on how those atoms are arranged. If we rearrange atoms in dirt, water and air we get grass. The next step in manufacturing technology is to manufacture products at molecular level. The technology used to achieve manufacturing at molecular level is “NANOTECHNOLOGY”. Nanotechnology is the creation of useful materials, devices and system through manipulation of such miniscule matter (nanometer).Nanotechnology deals with objects measured in nanometers. Nanometer can be visualized as billionth of a meter or millionth of a millimeter or it is 1/80000 width of human hair.

Medical Imaging

Added on: January 10th, 2017 by Afsal Meerankutty No Comments

The increasing capabilities of medical imaging devices have strongly facilitated diagnosis and surgery planning. During the last decades, the technology has evolved enormously, resulting in a never-ending flow of high-dimensional and high-resolution data that need to be visualized, analyzed, and interpreted. The development of computer hardware and software has given invaluable tools for performing these tasks, but it is still very hard to exclude the human operator from the decision making. The process of stating a medical diagnosis or to conduct a surgical planning is simply too complex to fully automate. Therefore, interactive or semi-automatic methods for image analysis and visualization are needed where the user can explore the data efficiently and provide his or her expert knowledge as input to the methods.

All software currently being written for medical imaging systems have to conform to the DICOM (Digital Imaging in Communication in Medicine) standards to ensure that different systems from different vendors can successfully share information).so, you can, for example, acquire the image from a Siemens viewing station and do the processing on Philips multimodal stations (the same station being able to easily process say MRI as well as CAT scan images) are already in common use. Vendors are also able to send private information that only their software and viewing stations can read, so as to enhance their equipment. For example a Philips acquisition system can acquire and transmit more information than prescribed by the standard. Such extra information can be deciphered only by the standard. Even though the basic job is that of image processing, the algorithms used in medical software can be vastly different from say those used in other commercial image manipulation software like movie software or Photoshop. The reason behind this is that medical systems have to preserve a very high degree of accuracy and detail or there could be fatal results.

BrainGate

Added on: December 26th, 2016 by Afsal Meerankutty No Comments

BrainGate is a brain implant system developed by the bio-tech company Cyberkinetics in 2003 in conjunction with the Department of Neuroscience at Brown University. The device was designed to help those who have lost control of their limbs, or other bodily functions, such as patients with amyotrophic lateral sclerosis (ALS) or spinal cord injury. The computer chip, which is implanted into the brain, monitors brain activity in the patient and converts the intention of the user into computer commands. Cyberkinetics describes that “such applications may include novel communications interfaces for motor impaired patients, as well as the monitoring and treatment of certain diseases which manifest themselves in patterns of brain activity, such as epilepsy and depression.”

The Braingate Neural Interface device consists of a tiny chip containing 100 microscopic electrodes that is surgically implanted in the brain’s motor cortex. The whole apparatus is the size of a baby aspirin. The chip can read signals from the motor cortex, send that information to a computer via connected wires, and translate it to control the movement of a computer cursor or a robotic arm. According to Dr. John Donaghue of Cyberkinetics, there is practically no training required to use BrainGate because the signals read by a chip implanted, for example, in the area of the motor cortex for arm movement, are the same signals that would be sent to the real arm. A user with an implanted chip can immediately begin to move a cursor with thought alone.

The BrainGate technology platform was designed to take advantage of the fact that many patients with motor impairment have an intact brain that can produce movement commands. This may allow the BrainGate system to create an output signal directly from the brain, bypassing the route through the nerves to the muscles that cannot be used in paralysed people.

Access Premium Seminar Reports: Subscribe Now



Sign Up for comprehensive seminar reports & presentations: DOCX, PDF, PPTs.